3.236 \(\int \frac{(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac{5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=131 \[ \frac{8 a^2 (3 A+5 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{15 d \sqrt{a \sec (c+d x)+a}}+\frac{2 a (3 A+5 B) \sin (c+d x) \sqrt{a \sec (c+d x)+a}}{15 d \sqrt{\sec (c+d x)}}+\frac{2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

[Out]

(8*a^2*(3*A + 5*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(3*A + 5*B)*Sqrt[a
+ a*Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*x]]) + (2*A*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(5*d
*Sec[c + d*x]^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.256374, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {4013, 3809, 3804} \[ \frac{8 a^2 (3 A+5 B) \sin (c+d x) \sqrt{\sec (c+d x)}}{15 d \sqrt{a \sec (c+d x)+a}}+\frac{2 a (3 A+5 B) \sin (c+d x) \sqrt{a \sec (c+d x)+a}}{15 d \sqrt{\sec (c+d x)}}+\frac{2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(8*a^2*(3*A + 5*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*(3*A + 5*B)*Sqrt[a
+ a*Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*x]]) + (2*A*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(5*d
*Sec[c + d*x]^(3/2))

Rule 4013

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 3809

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*m), x] + Dist[(b*(2*m - 1))/(d*m), Int[(a + b*C
sc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
&& EqQ[m + n, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac{5}{2}}(c+d x)} \, dx &=\frac{2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{5} (3 A+5 B) \int \frac{(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 a (3 A+5 B) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{15} (4 a (3 A+5 B)) \int \frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{8 a^2 (3 A+5 B) \sqrt{\sec (c+d x)} \sin (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}+\frac{2 a (3 A+5 B) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{15 d \sqrt{\sec (c+d x)}}+\frac{2 A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x)}\\ \end{align*}

Mathematica [A]  time = 0.473275, size = 73, normalized size = 0.56 \[ \frac{a^2 \sin (c+d x) \sqrt{\sec (c+d x)} (2 (9 A+5 B) \cos (c+d x)+3 A \cos (2 (c+d x))+39 A+50 B)}{15 d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(a^2*(39*A + 50*B + 2*(9*A + 5*B)*Cos[c + d*x] + 3*A*Cos[2*(c + d*x)])*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*
Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.302, size = 97, normalized size = 0.7 \begin{align*} -{\frac{2\,a \left ( -1+\cos \left ( dx+c \right ) \right ) \left ( 3\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}+9\,A\cos \left ( dx+c \right ) +5\,B\cos \left ( dx+c \right ) +18\,A+25\,B \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{15\,d\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x)

[Out]

-2/15/d*a*(-1+cos(d*x+c))*(3*A*cos(d*x+c)^2+9*A*cos(d*x+c)+5*B*cos(d*x+c)+18*A+25*B)*(a*(cos(d*x+c)+1)/cos(d*x
+c))^(1/2)*cos(d*x+c)^3*(1/cos(d*x+c))^(5/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 2.0118, size = 338, normalized size = 2.58 \begin{align*} \frac{3 \, \sqrt{2}{\left (20 \, a \cos \left (\frac{4}{5} \, \arctan \left (\sin \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ), \cos \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right )\right )\right ) \sin \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ) + 5 \, a \cos \left (\frac{2}{5} \, \arctan \left (\sin \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ), \cos \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right )\right )\right ) \sin \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ) - 20 \, a \cos \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ) \sin \left (\frac{4}{5} \, \arctan \left (\sin \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ), \cos \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right )\right )\right ) - 5 \, a \cos \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ) \sin \left (\frac{2}{5} \, \arctan \left (\sin \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ), \cos \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right )\right )\right ) + 2 \, a \sin \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ) + 5 \, a \sin \left (\frac{3}{5} \, \arctan \left (\sin \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ), \cos \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right )\right )\right ) + 20 \, a \sin \left (\frac{1}{5} \, \arctan \left (\sin \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right ), \cos \left (\frac{5}{2} \, d x + \frac{5}{2} \, c\right )\right )\right )\right )} A \sqrt{a} + 20 \,{\left (\sqrt{2} a \sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) + 9 \, \sqrt{2} a \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )} B \sqrt{a}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/60*(3*sqrt(2)*(20*a*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) + 5*a*
cos(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 20*a*cos(5/2*d*x + 5/2*c)*
sin(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*a*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/
2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 2*a*sin(5/2*d*x + 5/2*c) + 5*a*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c),
cos(5/2*d*x + 5/2*c))) + 20*a*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*A*sqrt(a) + 20*(sq
rt(2)*a*sin(3/2*d*x + 3/2*c) + 9*sqrt(2)*a*sin(1/2*d*x + 1/2*c))*B*sqrt(a))/d

________________________________________________________________________________________

Fricas [A]  time = 0.464131, size = 251, normalized size = 1.92 \begin{align*} \frac{2 \,{\left (3 \, A a \cos \left (d x + c\right )^{3} +{\left (9 \, A + 5 \, B\right )} a \cos \left (d x + c\right )^{2} +{\left (18 \, A + 25 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \,{\left (d \cos \left (d x + c\right ) + d\right )} \sqrt{\cos \left (d x + c\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

2/15*(3*A*a*cos(d*x + c)^3 + (9*A + 5*B)*a*cos(d*x + c)^2 + (18*A + 25*B)*a*cos(d*x + c))*sqrt((a*cos(d*x + c)
 + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}{\sec \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^(3/2)/sec(d*x + c)^(5/2), x)